Locally Finitely Dimensional Shift - Invariant Spaces In

نویسندگان

  • AKRAM ALDROUBI
  • QIYU SUN
چکیده

We prove that a locally nitely dimensional shift-invariant linear space of distributions must be a linear subspace of some shift-invariant space generated by nitely many compactly supported distributions. If the locally nitely dimensional shift-invariant space is a subspace of the HH older continuous space C or the fractional

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Finitely Dimensional Shift-invariant Spaces in R

We prove that a locally finitely dimensional shiftinvariant linear space of distributions must be a linear subspace of some shift-invariant space generated by finitely many compactly supported distributions. If the locally finitely dimensional shiftinvariant space is a subspace of the Hölder continuous space C or the fractional Sobolev space L , then the superspace can be chosen to be C or L , ...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Locally Finite Dimensional Shift-invariant Spaces in R

We prove that a locally finite dimensional shift-invariant linear space of distributions must be a linear subspace of some shift-invariant space generated by finitely many compactly supported distributions. If the locally finite dimensional shift-invariant space is a subspace of the Hölder continuous space C or the fractional Sobolev space L , then the superspace can be chosen to be C or L , re...

متن کامل

Local reconstruction for sampling in shift-invariant spaces

The local reconstruction from samples is one of most desirable properties for many applications in signal processing, but it has not been given as much attention. In this paper, we will consider the local reconstruction problem for signals in a shiftinvariant space. In particular, we consider finding sampling sets X such that signals in a shift-invariant space can be locally reconstructed from ...

متن کامل

Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation

From an average (ideal) sampling/reconstruction process, the question arises whether and how the original signal can be recovered from its average (ideal) samples. We consider the above question under the assumption that the original signal comes from a prototypical space modelling signals with finite rate of innovation, which includes finitely-generated shift-invariant spaces, twisted shift-in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007